Section 3.5: Rational Functions, Graphs

Video 1

1) Sketch the graph of $f(x)=\frac{1}{x}$.

State the domain and range, and the largest open intervals of the domain over which the function is increasing or decreasing.

2) Sketch the graph of $f(x)=-\frac{4}{x}$.

State the domain and range, and the largest open intervals of the domain over which the function is increasing or decreasing.

3) Sketch the graph of $f(x)=\frac{5}{x-2}+3$.

State the domain and range, and the largest open intervals of the domain over which the function is increasing or decreasing.

Video 2

4) Sketch the graph of $f(x)=\frac{1}{x^{2}}$.

State the domain and range, and the largest open intervals of the domain over which the function is increasing or decreasing.

5) Sketch the graph of $f(x)=-\frac{3}{(x+1)^{2}}+2$.

State the domain and range, and the largest open intervals of the domain over which the function is increasing or decreasing.

Video 3

Finding Asymptotes

If $f(x)$ is a rational function is lowest terms, here is how to find its vertical asymptotes and horizontal or oblique asymptote.

- Vertical Asymptote: Find the zeros of the denominator.

If a is a zero of the denominator, then $x=a$ is a vertical asymptote.

- Other Asymptotes:

If the degree of the numerator is less than the degree of the denominator, then $y=0$ is a horizontal asymptote.

If the numerator and denominator have the same degree, then $y=\frac{a}{b}$ is a horizontal asymptote, where a is the leading coefficient of the numerator and b is the leading coefficient of the denominator.
If the degree of the numerator is exactly 1 greater than the degree of the denominator, then the function has an oblique (slant) asymptote. Find it by dividing.

Find all asymptotes of the given rational functions.
6) $f(x)=\frac{x-5}{x^{2}-3 x-28}$
7) $f(x)=\frac{6 x-4}{2 x+3}$
8) $f(x)=\frac{2 x^{2}-8 x-10}{x+3}$

Video 4
9) Graph $f(x)=\frac{x-4}{x^{2}+3 x+2}$.

10) Graph $f(x)=\frac{3 x-6}{x+5}$.

11) Graph $f(x)=\frac{2 x^{2}+10 x-12}{x^{2}+7 x+12}$.

Video 5
12) Graph $f(x)=\frac{x^{2}-2 x-8}{x+3}$.

Video 6
13) Graph $f(x)=\frac{x^{2}-4 x-12}{x-6}$.

14) Graph $f(x)=\frac{x^{2}-4}{x^{2}+3 x-10}$.

